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Summary 
A simple mixing-reaction model has been developed [l]  which allows a 

description and simulation of the coupling of the mass diffusion with the chemical 
reaction during the mixing process of two miscible reactant solutions. For 
competitive, consecutive as well as for competitive, parallel second-order reactions 
the general behaviour and the dependence of the product distribution on diffusion 
effects are calculated for semi-continuous reaction conditions using various 
simplifying assumptions. The usefulness of these assumptions is discussed with 
reference to the calculated predictions of two versions of the mixing-reaction model. 

1. Introduction. - For the purpose of rationalizing the path taken by reagents 
during their reaction to give the product it is convenient to subdivide a chemical 
reaction into various individual processes: At first the solutions of the reacting 
species have to be mixed together. This mixing process is accompanied by a 
molecular diffusion process in which the encounter complex is formed. Finally, this 
encounter complex can either dissociate, or the bond-making and bond-breaking 
events lead to the product. In the case of fast reactions the mixing process or the 
encounter complex formation can be the rate limiting step and hence affect the 
observed product distribution. 

In Part I of this series [l] a simple mixing-reaction model was developed which 
allows a description of the coupling of the mass diffusion with the bond-making 
and bond-breaking events of a chemical reaction during the mixing process. The 
dependence of the product distribution on mass diffusion effects was simulated. 
In Part I1 of this series [2] the disguise of the chemical selectivity by the mixing 
process was demonstrated experimentally using the fast nitration with nitronium 
salts in aprotic solvents. 

I )  Part I1 (2nd Communication) cf [2]. 
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In the present paper, the calculated predictions of two versions of the mixing- 
reaction model are compared. In contrast to version I [l], the new version I1 is 
expected to allow more accurate predictions to be made of the product distribution 
in mixing-disguised batch-wise reaction systems such as those encountered in 
everyday laboratory syntheses. 

2. The Mixing-Reaction Model. - The concept of the presented model has 
already been described in detail [l]. It is based on the assumption that during the 
addition of one reactant solution to another, liquid elements, so-called eddies, are 
formed. The mean size of these eddies, i.e. the segregation length, will be a function 
of the solvent and of the intensity of the turbulence [3] [4]. The latter will depend 
on the kinetic energy added to the system, for example, by mechanical stirring. 
It will also depend on the viscosity of the solvent. 

The turbulent flow of a liquid consists of disorderly displacements of fluid elements. According to 
Kolmogoroff [4] these displacements can be thought of as a superposition of pulsations of successively 
increasing frequency. Such a process of successive refinement of turbulent pulsations may be continued 
until, for pulsations of some sufficiently large order n, the kinetic energy of the liquid elements is 
viscously dissipated as heat thus preventing the formation of pulsations of order n +  1 .  The characteristic 
length of the liquid elements (eddies) which are associated with the pulsations of the order n, is defined 
as the Kolmogoroffturbulence microscale. 

In our mixing-reaction model it is assumed as a first approximation that the 
dispersion of the eddies throughout the whole liquid is much faster than the 
molecular diffusion within them, and that the eddies are spherical with a mean 
radius R of the order of the Kolmogoroffturbulence microscale. 

For the mathematical description of the mixing-reaction-process the equation 
of continuity is used: 

(1) ~- - - ~ O O O ( ~  . gi )+r i .  
dt 

[i] 
3, 
t time [s]; 
r, 
V 

Equation (1) describes the change of molar concentration of the component i with 
respect to time at a fixed point in space. This change results from the motion of 
species i and its chemical reaction. Choosing the eddy as diffusion-reaction system 
and assuming constant diffusion coefficients, constant total molar concentration, 
zero molar average velocity2) and spherical eddies with constant mean radius, 

molar concentration of species i [MI; 
molar flux of species i with respect to stationary coordinates [mol ~m-~s - ' ] ;  

molar rate of production of species i by chemical reaction [M s-'1; 
'del' or 'nabla' operator [cm-I]. 

equation (1) becomes3): 

Di 
r polar coordinate [cm]. 

2 ,  

diffusion coefficient of species i [cm2sK1]; 

The molar average velocity is understood to be the velocity caused by the bulk motion of the fluid 
within the eddy. If it is assumed that the bulk motion of the main component of the eddy fluid, 
namely the solvent, is zero, the molar average velocity can also be assumed to be zero'. 
For a more detailed derivation of equation (2) see [l]. 3, 
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The molar rate of production by chemical reaction, ri in equation ( 2 ) ,  can be 
replaced in a competitive, consecutive second-order reaction system (Scheme 1) by 
the expressions (3)-(6) and in a competitive, parallel second-order reaction system 
(Scheme 2) by the expressions (7)-( 1 1). 

Scheme 1 

kl 
A + B --+ R primary reaction 

k2 R + B + S secondary reaction 
k l ,  kz intrinsic second-order rate constants [M-~s-']. 

Scheme 2 

A + B % P  

C+B LQ 
k3, k4 intrinsic second-order rate constants [ M - ~ s - ~ ] .  

If the solutions of the differential equation systems (2)-(6) and ( 2 ) ,  (7)-(11) 
satisfy certain specified initial and boundary conditions the product distributions 
can be calculated. 

The initial conditions are taken when the eddies are built (t=O) assuming that no diffusion and 
reaction in the eddy have taken place until this moment. If one reactant solution is initially present 
in the reaction vessel and the second reactant solution is added to it, i.e. if the reactions are carried out 
batch-wise, the initial conditions will depend on the rate of addition of the solutions: If the feed rate is 
slow (e.g. dropwise addition), different initial conditions will apply for every new eddy. These initial 
conditions are determined by the reaction behaviour of the previous eddies. Such a situation is 
encountered daily in laboratory syntheses. However, for the calculations discussed in the present paper 
the simplifying assumption is made that the reactant solutions are combined and dispersed 
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instantaneously (degree of segregation is one) thus the same initial conditions (see pp. 2930 and 2931) for 
all eddies apply. If the reactions are conducted under continuous conditions the initial conditions are again 
different4): For instance in the case of competitive, consecutive reactions (Scheme I ) ,  the steady-state 
initial concentrations of A or R are lower and higher, respectively, than the initial concentrations in 
batch-wise reactions. Furthermore, these initial conditions will also depend on the degree of dispersion 
(macroscopic mixing) and thus on the point of entry of the feed streams. 

Boundary conditions result from the symmetry of the spherical eddy: There is no flux of the mobile 
species through the centre of the eddy, i.e. the concentration gradient there is zero. 

Further boundary conditions are derived from a material balance of the mobile reactants over the 
solution and the eddy. 

V , ( T )  r b R  = - S , D , ( F )  r = R  . (13) 

V, 
R 
S, 

The left hand side of equation (13) expresses the change in the amount of species i in the volume of 
solution with respect to time. The right hand side describes the flux of species i through the interface of 
the substrate eddy. Equation (13) can be rearranged to equation (14). 

volume of solution excluding eddy volume [cm3]; 
mean radius of the eddies [cm]; 
surface of the spherical eddy [cm2]. 

V, volume of the spherical eddy [cm3]. 

Equation (2) and the appropriate initial and boundary conditions can be 
normalized for i = A ,  B, C, R by introducing the following dimensionless 
expressions5) (the same diffusion coefficient D for all species i is assumed): 

V,, Vgvolume of solution of reactant A and B, respectively [I]. 

For the competitive, consecutive and the competitive, parallel reactions this 
normalization leads to the generalized differential equations (1 5)-( 17) and 
(1 8)-(20), respectively. 

4, 

5 ,  

A comprehensive discussion is in preparation. 
The index 0 refers to the initial concentrations before mixing. The normalization using [A10 or [B]o 
leads to dimensionless expressions which are labelled with the index A and B, respectively. 
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The equations of continuity for the products S (competitive, consecutive case), 
and P and Q (competitive, parallel case) are redundant as long as it is assumed that 
the concentration profiles of these species have no influence on the product 
distribution of the diffusion-reaction process. The total amount of the products S, P 
and Q can be calculated by a material balance over the whole system. 

The term for the diffusional flux in these equations can be neglected if the 
species i is considered to be immobile: In version I [ 11 zero diffusion was assumed of 
the molecules A ,  R and S in the competitive, consecutive case (Scheme 1) and of 
the molecules A ,  C, P and Q in the competitive, parallel case (Scheme 2). These 
molecules were assumed to be fixed (immobile) within the eddy into which the 
species B diffuse and react. Consequently for version I, the term for the diffusional 
flux has only to be considered in equations (16) and (19). 

In version I1 the opposite assumption is made, namely that the reagent B is fixed 
within the eddy. The diffusing species are now A ,  R and S in the consecutive case 
(Schemel)  and A ,  C, P and Q in the parallel case (Scheme 2). Therefore, for 
version I1 the term for the diffusional flux in equations (16) and (19) can be 
neglected. 

The appropriate initial and boundary conditions are given for the competitive, 
consecutive case after equations (15)-( 17) and for the competitive, parallel case 
after equations (18)-(20). 

Competitive, Consecutive Second-Order Reactions (Scheme 1): 

Initial conditions: T = 0 

Version 11: X < l :  A A = O ;  B B = l ;  R A = O  
X = l :  A A = l ;  B B = l ;  Q A = O  

Boundary conditions: T > 0 

= O  Version I: * x=o: 
dX 
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Version 11: 
-- -0  x=o: __- dA A -0;  d a A  

ax ax 

Competitive, Parallel Second-Order Reactions (Scheme 2): 

arc - a2rC 2 arc 
40g,4rCBB 

+--- 
dT dX2 X dX 

Initial conditions: T = 0 

Boundary conditions: T > 0 

Version I: 

Version 11: 
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3. Procedure for Numerical Solution. - Since an analytical solution of the two 
systems of equation (15)-(17) and (18)-(20) does not exist, a numerical 
approximation must be used. In addition to the stable explicit finite difference 
method [ 5 ] ,  the Method of Lines [6]  was employed. When  pi,^< lo4, the algorithm 
of Runge-Kutta-Gill was used for the integration. For values of lo4 the method 
of Hindemarsch & Gear [7] for stiff differential equations was applied. 

4. Simulated Behaviour of Mixing Disguised Reactions. - The selectivity 
behaviour of mixing-disguised competitive, consecutive and competitive, parallel 
reactions are shown in Figure 1 and 2 and Figures 3-5, respectively. The dotted and 
the solid lines represent the behaviour calculated using version I and version 11, 
respectively. The appropriate values are listed in Tables 1 and 2. The product 

1.0 I I I I I 

0.5 

0 

a 

b 

lo-’ 1 10 lo2 1 o1 
Fig. 1. competitive, consecutive second-order reactions (Scheme 1): Calculated relative yields X s  as a 

function for  different (a-f) intrinsic selectivities (pg, ,/(P;,~ (spherical geometry) 
a = l . b = 2 ;  c=5 ;d=10 .e=102 . f=104 .E=1 .a=1  

_ _ _ _ _ _  Version I; - Version I1 

1.0 I I I I 

0.5 - 

0 
lo-’ 1 10 lo2 1 o3 

Fig. 2. Competitive, consecutive second-order reactions (Scheme 1): Calculated relative yields X ,  as a 
function of (pi,* for  different (a-c) values of a (spherical geometry) 

a=0.1; b =  1.0; c= 10; E a =  1; 100 
Version I; - Version I1 _ _ _ _ _ _  



HELVETICA CHIMICA ACTA - Vol. 60, Fasc. 8 (1977) - Nr. 287 2933 

lo-' 1 10 lo2 lo3 
Fig. 3. Competitive, parallel second-order reactions (Scheme 2): Calculated relative yields XQ as a 

function of 'p&,4 for different (a-h) intrinsic selectivities 'p&,3/'pfj4 (spherical geometry) 
a=0.01; b=0.1; c=0.3; d =  1; e=3; f=  10; g= 102; h =  104; E =  1;M= 1; a =  1 

Version I; - Version I1 _ _ _ _ _ _  

0.5 

0.25 

0 
1 10 lo2 

Fig. 4. Competitive, parallel second-order reactions (Scheme 2): Calculated relative yields X Q  as a 
function of 'pi,4 for different (a-d) values of E (spherical geometry) 

a = ] ;  b=2;~=5;d=10;(p~, , / 'p&, ,=100;M=1;  a = l  
Version I: - Version I1 _ _ _ _ _ _  

distribution after 100% conversion is expressed by the relative yield Xs or X,. It is 
defined as the fraction of the reagent B which has reacted after 100% conversion 
to the product S or Q .  The results in Figures 1-5 are self-explanatory6). 

The general behaviour of the mixing-disguised reactions has already been 
discussed in detail [ 11. However, there are two major differences between the 
predicted behaviour calculated according to version I and that calculated according 
to version 11: First, different slopes of the selectivity curves are observed 
(Figures 1-4). The selectivity curves for version I always have a greater slope than 
those for version 11. Second, there is a striking difference in the dependence of Xs 
or X q  on the volume ratio a. These differences can be explained by the different 

6 ,  Additional calculations can be found in [8] and [9]. 
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0.125 

n 

1 10 loL 
Fig. 5. Competitive, parallel second-order reactions (Scheme 2): Calculated relative yields XQ as a 

function of a for  different (a,b) values of  pi,^ (spherical geometry) 
a =  1; b =  10; (P~,~/(D;,~= 100; E U =  I ;  M =  1 

Version I ;  - Version I1 - - - _ _ -  

Table I.  Calculated relative yields Xs as a function of ~ p i , ~ ,  ~pi,~, E and a for  a competitive, consecutive 
second-order reaction (Scheme 1 ; spherical geometry) 

Xs-values calculated according to version I1 (For Xs-values according to version I, see [l]) 
RC: reaction-controlled 

1 RC 
4 
10 
40 
100 
1000 

10 RC 
1 
4 
10 
40 
100 
400 
lo00 

100 RC 
0.1 
0.25 
1 
2.5 
10 
25 
100 

1 1 0.636 
0.646 
0.662 
0.718 
0.772 
0.887 

1 1 0.232 
0.252 
0.3 I4 
0.404 
0.569 
0.655 
0.748 
0.814 

1 1 0.052 
0.056 
0.064 
0.117 
0.192 
0.35 1 
0.480 
0.652 

1 (H) 250 
1000 

10000 RC 
0.1 
0.4 
1 
4 

100 0.1 
0.4 
1 
4 
10 
40 
100 
1000 

100 0.1 
0.4 
1 
4 
10 
40 
100 

1 1 0.743 
0.842 

1 1 0.002 
0.002 
0.005 
0.100 
0.220 

10 0.1 0.053 
0.063 
0.093 
0.187 
0.277 
0.441 
0.552 
0.780 

0.1 10 0.060 
0.092 
0.150 
0.307 
0.442 
0.632 
0.725 
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( P & , ~ ,  E and a for a competitive, parallel Table 2. Calculated relative yields X Q  as a function of 
second-order reaction (Scheme 2; spherical geometry) 

XQ-values calculated according to version I1 (For Xs-values according to version I, see [I])  
M =  1; RC: reaction-controlled 

2 E a XQ &3/(P2B,4 ( P i , 4  E a xQ 44,3'(P2B,4 (PB,4 

0.01 

0.1 

0.3 

1 

3 

10 

RC 
0.1 
1 
10 
30 
100 
300 
1000 
RC 
0.1 
1 
10 
30 
100 
1000 
RC 
0.1 
1 
10 
100 
1000 
RC 
10 
1000 
RC 
0.1 
1 
10 
100 
1000 
RC 
0.1 
1 
10 
100 
1000 

0.97 100 
0.97 
0.97 
0.97 
0.97 
0.94 
0.89 1000 
0.82 
0.84 
0.84 
0.83 
0.83 
0.81 
0.76 100 
0.65 
0.68 
0.68 
0.68 
0.68 
0.63 100 
0.57 
0.50 
0.50 
0.50 
0.32 
0.32 100 
0.32 
0.34 
0.41 
0.46 
0.16 
0.16 100 
0.17 
0.24 
0.35 100 
0.43 

RC 
0.1 
1 
10 
100 
1000 
RC 
0.1 
1 
3 
10 
100 
1000 
RC 
1 
10 
100 
1000 
10000 
RC 
1 
10 
100 
1000 
10000 
RC 
1 
10 
100 
1000 
10000 
1 
1 
1 
10 
10 
10 

1 

1 

2 

5 

10 

0.2 
0.1 10 
0.01 100 
0.2 5 
0.1 10 
0.01 100 

0.03 
0.04 
0.07 
0.18 
0.3 1 
0.40 
0.01 
0.01 
0.05 
0.10 
0.16 
0.3 1 
0.41 
0.0 1 
0.03 
0.10 
0.24 
0.35 
0.45 
0.01 
0.02 
0.06 
0.17 
0.30 
0.42 
0.01 
0.02 
0.05 
0.15 
0.25 
0.39 
0.08 
0.08 
0.08 
0.21 
0.22 
0.23 

concentration profiles for both versions. This can be shown, for instance, using the 
concentration profiles for the competitive, consecutive reactions (Figure 6): In 
version I every product R that is formed remains exposed to further attack by the 
diffusing reagent B. In contrast, in version I1 some of species R is allowed to escape 
from the reaction zone thus decreasing the probability of the second reaction to 
form S and, therefore, decreasing the slope of the selectivity curves. 

5. Conclusions. - The influence of micromixing on the product distribution of 
mixing-disguised reactions has been simulated with the help of a simple mixing- 
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Version I Version II 

6. 

4 -  

2*  

0 1  

x 

' ' ' ' 

L 

.4 -2 .6 .8 

X .- 
Fig. 6.  Calculated concentration projiles of mixing-disguised competitive, consecutive second-order 

reactions: 
~p;,~/(p;,~= 1000/10; E =  1; a =  I 

Reaction times (T): a(0.004); b(O.O1); c(0.02); d(0.04); e(0. I ) ;  f(0.2) 

reaction model. Depending on the basic assumptions used in the calculation of the 
coupling of mass diffusion with the chemical reactions some differences in the 
predicted product distributions can be observed. Which of these assumptions are 
more realistic only future experiments can decide. Despite these minor differences 
the previous conclusions [l] concerning the usefdness of the moduli (P:,~ as mixing 
criteria are still valid. 

Partial financial support of this investigation by the Swiss National Science Foundation 
(Project Nr. 2.620.72) and by Ciba-Geigy AG., Basel is gratefully acknowledged. 
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Summary 
The disguise of the intrinsic selectivity of competitive, consecutive reaction 

systems by the mixing process is demonstrated experimentally using the fast 
nitration of a number of aromatic compounds with nitronium salts in nitromethane. 
The measured product distributions were compared with the distributions predicted 
from our mixing-reaction model developed previously [2] [4]. This comparison 
enabled the relative intrinsic rate constants for the second nitration step of the 
aromatic compounds investigated to be determined. 

I )  
2, 

Part I11 and 3rd Communication cfi [4]. 
Results taken from the PhD. thesis of F. Nabholz [ 11. 


